2 Haziran 2013 Pazar

İĞNELİ SAYFA İLE GÖRME ENGELLİLERİN KULLANDIĞI DİĞER MATEMATİK ÖĞRENME SETLERİNİN KARŞILAŞTIRILMASI


M. Şahin BÜLBÜL, Ümmügülsüm CANSU, Dilber DEMİRTAŞ, Belkıs GARİP
Orta Doğu Teknik Üniversitesi, Eğitim Fakültesi, OFMAE Bölümü
Görme engelli öğrenciler matematik öğrenirken; temel olarak abaküs, küp taş ve Taylor kasa kullanmaktadır. Bu çalışma bahsedilen materyaller ile iğneli sayfa (İS) isimli materyalin nitelik ve nicelik açısından karşılaştırmasını içermektedir. Kısaca, üzerinde toplu iğnelerin olduğu bir düzlem ve düzlem üzerinde matematik işlemlerinin yapılmasına izin veren diğer yardımcı materyallerden oluşan bu setin hangi açılardan diğer setlere göre üstün ya da sakıncalı olduğunun incelenmesi temel problemimizdir. Görme engellilerin ve gören öğrencilerin birlikte aynı materyal üzerinde çalışabilmesini sağlayan İS, kaynaştırmalı eğitim için de önemli bir materyaldir. Araştırma için küp taş, abaküs ve Taylor kasa kullanmış, dört öğretmen ve iki öğrenci ile uygulamalı görüşmeler yapılmıştır. İS ile uygulama yapan görme engelli öğrenciler ve öğretmenlerinin ifadeleri derlenerek bu karşılaştırma yapılmıştır. Görüşmeler sonucunda ekonomiklik, taşınabilirlik, güvenli oluş, anlaşılır oluş, kullanışlılık, kapsamlı oluş, esnek kullanıma uygunluk ve düşük güç-beceri gerektirme gibi sekiz ölçüt açısından karşılaştırma yapılmış ve İS tüm ölçütlerde olumlu görüş bildirilmiş bir araç olarak karşımıza çıkmıştır.
Anahtar Kelimeler: Abaküs, Küp Taş, Taylor Kasa, İğneli Sayfa, Matematik Eğitimi, Görme Engelliler
1. GİRİŞ
Matematiğe, hayatın her alanında işlerimizi kolaylaştırmak ve olayları daha iyi yorumlayabilmek için ihtiyaç duymaktayız. Bu sebep göz önünde bulundurularak genelde öğretim programları matematiği merkeze alacak şekilde hazırlanmaktadır. Matematik ilköğretim ve ortaöğretim seviyesinde zorunlu ders olarak verilmektedir. Ancak, matematik genel olarak görme engelli öğrencilerin üstesinden gelemeyeceği bir ders olarak görülmektedir. Oysaki ihtiyaç duyulan yöntem ve materyaller farklı olsa da, uygun eğitim ortamları sunulduğunda görme engeli öğrencilerin de gören akranları gibi matematik öğrenememelerine bir engel yoktur. Görme engellilerin sıradan hesap makinelerinin yerine konuşan hesap makineleri; kâğıt, kalem ile işlem yapmak yerine ise hafıza ya da abaküs kullanması bu yöntem ve materyallere örnek olarak gösterilebilir (Bülbül & Eryılmaz, 2012). Görme engelli öğrencilerin matematik eğitiminde yaygın olarak avuç içine çizmek, denklemleri tek satırlı hale getirip (Brazier, Parry & Fischbach, 2000) onları kabartmalı kâğıtlara basmak (Thompson, 2005) gibi yöntemler denenmiştir. Ülkemizde ise görme engelli öğrenciler temel olarak; abaküs, küp taş ve Taylor kasa gibi materyalleri kullanmaktadır (Gürel, 2011). Bu çalışma, bahsedilen materyaller ile iğneli sayfa (İS) isimli materyalin nitelik ve nicelik açısından karşılaştırmasını içermektedir. Kısaca, üzerinde toplu iğnelerin olduğu bir düzlem ve düzlem üzerinde matematik işlemlerinin yapılmasına izin veren diğer yardımcı materyallerden oluşan bu setin hangi açılardan diğer setlere göre üstün ya da sakıncalı olduğunun incelenmesi bu çalışmanın araştırma konusunu oluşturmaktadır. Görme engellilerin ve gören öğrencilerin birlikte aynı materyal üzerinde çalışabilmesini sağlayan İS, kaynaştırmalı eğitim için de önemli bir materyaldir.
Araştırma için küp taş, abaküs ve Taylor kasa kullanmış dört öğretmen ve iki öğrenci ile uygulamalı görüşmeler yapılmıştır. İS ile uygulama yapan görme engelli öğrenciler ve öğretmenlerinin ifadeleri derlenerek bu karşılaştırma yapılmıştır. Görüşmeler sonucunda ekonomiklik, taşınabilirlik, güvenli oluş, anlaşılır oluş, kullanışlılık, kapsamlı oluş, esnek kullanıma uygunluk ve düşük güç-beceri gerektirme gibi sekiz ölçüt açısından karşılaştırma yapılmış ve İS tüm ölçütlerde olumlu görüş bildirilmiş bir araç olarak karşımıza çıkmıştır.
2. YÖNTEM
Bu çalışmada, Ankara İlindeki görme engellilere eğitim veren bir İlköğretim okulunda görev yapan dört öğretmen ve iki öğrenci ile görüşmeler yapılmıştır. Uygulamalar sırasında taylor kasa, küptaş kasa ve
iğneli sayfa ile matematik konuları çalışılmış, öğrenci ve öğretmenlerden bu materyallere ilişkin dönütler alınmıştır. Öğretmen ve öğrencilere kullandıkları materyaller sorulmuş ve kullanım biçimleri gözlemlenmiş ayrıca İS’in taslak biçimi tanıtılmış, denemeleri ve fikirlerini belirtmeleri istenmiştir. Görüşler ışığında bu üç materyallin olumlu-olumsuz yönlerini ve sınırlılıklarını içermektedir.
2.1. Taylor Kasa: Taylor kasa (Şekil 1) delikler ve bu deliklere yerleştirilen sekiz köşeli taşlardan oluşmaktadır. Taylor taşların konumlarına göre rakamlar ve dört işlem için gerekli temel matematik sembolleri oluşturulur.
Şekil 1. Taylor kasanın çizim ve gerçek görünümleri (MEB, 2011).
2.2. KüptaĢ Kasa: Bir diğer matematik öğrenme materyali ise küptaş kasa olarak bilinen materyaldir (şekil 2). Bu materyal altı, yüzü kabartmalı olan küp biçimli taşlar ve taşların içine yerleştirileceği oyuklardan oluşan bir tablet olmak üzere iki ana parçadan oluşur.
Şekil 2. Küptaş Kasa (MEB, 2011)
2.3. Ġğneli Sayfa: İğneli sayfa (Şekil 3) olarak isimlendirilen materyal tam olarak gören öğrencilerin kareli






Şekil 1. Taylor kasanın çizim ve gerçek görünümleri (MEB, 2011).

2.2. Küptaş Kasa: Bir diğer matematik öğrenme materyali ise küptaş kasa olarak bilinen materyaldir  (şekil 2). Bu materyal altı, yüzü kabartmalı olan küp biçimli taşlar ve taşların içine yerleştirileceği oyuklardan oluşan bir tablet olmak üzere iki ana parçadan oluşur.
Şekil 2. Küptaş Kasa (MEB, 2011)



2.3. İğneli Sayfa: İğneli sayfa (Şekil 3) olarak isimlendirilen materyal tam olarak gören öğrencilerin kareli defterde yaptıklarını üç boyutlu hale getirip işin içine dokunma duyusunu da katarak görme engelli öğrencilerin de matematik öğrenebileceği bir hale getirme düşüncesi ile tasarlanmıştır (Bülbül, Garip, Cansu& Demirtaş, 2012).
Şekil 3.İğneli Sayfanın taslak biçimi.


İS tasarımı sürecinde belirlenen temel ilkeler ışığında yedi ana tasarım ilkesine uyulmaya çalışılmıştır. Bunlar; materyalin ekonomik, taşınabilir, güvenli, anlaşılır, kullanışlı, kapsamlı, esnek kullanımlı ve düşük güç gerektiren olması ile ilgilidir. Bu tasarım ilkeleri evrensel tasarım ilkeleri ile de uyumludur (Mcguire, Scott & Shaw, 2006).
Ekonomiklik: Bu tasarım ilkesi basit malzemelerle yapılabilir olmayı gerektirir. Bir köpük, iplik, pipetler ve lastik gibi basit malzemelerle İS tasarlanmış olup yine aynı malzemelerle hazırlanabilir olması setin alınmadan da birleştirilerek yapılabileceğini gösterir.
Taşınabilirlik: Malzemenin her yere taşınabilir olması diğer önemli tasarım ilkemizdir. Malzemelerin hepsi tak-çıkar biçimde düşünülmüş olup ağır, taşınamaz, biçimde değildir. Parçalarının taşınması ve saklanması için ayrı bir kasa, kap önerilmemektedir.
Güvenli oluş: İsminin iğneli sayfa olması ellerine batacağı düşüncesi oluştursa da bildiğimiz iğnelerin kullanılmaması düşünülmektedir. Üretilip yaygın kullanılacak materyalde bazı çıkıntılar söz konusudur. Ancak materyali hemen hazırlayıp kullanmak isteyenler tasarımın denendiği taslağa benzer biçimde toplu iğneler kullanabilir.
Anlaşılırlık: Materyalin tasarımında anlaşılır olması gerekliliğini anlatan ilkedir. Matematik öğrenenler matematikte kullanılan üstel yazma, aynı işaretleri kullanma gibi nedenlerden ötürü gören öğrencilerin öğrendikleri gibi öğrenebileceklerdir.
Kullanışlılık: Malzemenin kullanımı esnasında sallanmaması, oynak olmayan kararlı bir yapısının olması kullanışlı olduğuna işaret olarak sayılmaktadır.
Kapsamlılık: Öğretim açısından daha çok konunun, kavramın öğrenilmesine imkan veren yapı.
Esnek kullanışlılık: Sadece tak çıkar materyallerle değil, aynı işlemin ipler yardımıyla da yapılabilmesi, birden çok yöntemin kullanılabiliyor olması.
Düşük güç gerektirme: Güçlü ve beceriklilerin kullanıp, diğerlerinin başarılı olamaması bu ilkeye aykırı bir tasarımdır.
2.3.1.İS’ in Biçimsel Özellikleri
İğneli Sayfanın ön yüzünde Şekil 4’de görüldüğü gibi iğneler yardımıyla koordinat düzlemi oluşturulmuştur. Ön yüz grafiklerin oluşturulacağı, matematiksel islemlerin yapılacağı çalışma alanıdır.
Şekil 4’te görüldüğü gibi iğneler ile oluşturulacak olan koordinat eksenleri ön yüzü 4 eşit parçaya bölecektir, koordinat eksenleri 0,5cm boşluklar ile yanyana dizilmiş iğnelerden oluşmaktadır. İğnelerin üst kısımları dokunularak ayırtedilebilmeleri için Şekil 4’da gösterildiği gibi yuvarlak olacaktır. Eksenlerin hep iki tarafında 1cm ara ile 20’şer iğne yer alacaktır. Eksen iğnelerinden farklı olarak düzlem iğnelerinin üst kısmı Şekil 4’da gösterildiği gibi yassı olacaktır. Koordinat ekseni iğnelerinin koordinat düzlemi iğnelerine göre daha sık yerleştirilmelerinin sebebi çubuk grafikler oluşturulurken eksenlerin çubuklar için set oluşturmasının amaçlanmasırır. Böylece öğrenciler çubukları eksenlere yaslayarak kolayca yerleştirebilecektir.

Şekil 4. İğneli sayfanın ön yüzü



Arka yüzüne ise Şekil 5’de olduğu gibi materyaller sabitlenmiştir. Bu materyaller matematiksel işaretler, bilinmeyen ifadeler ve ek materyaller olarak 3 temel grupta ele alınarak Tablo 1’de gösterilmiştir.
Şekil 5. İğneli sayfanın arka yüzü



3. BULGULAR

İS ile diğer bahsedilen matematik öğrenme materyalleri karşılaştırıldığında, genel olarak İS’in diğer üç materyali kapsadığı ve onlardan bazı yönleriyle de üstün olduğu sonucuna varılabilir. Bu sonuca, Ankara İlindeki görme engellilere eğitim veren bir İlköğretimde görev yapan dört öğretmen (Ö1, Ö2, Ö3 ve Ö4)ve iki öğrenci (Ç1 ve Ç2) ile yapılan görüşmeler sonucunda varılmıştır. Öğretmen ve öğrencilere kullandıkları materyaller sorulmuş ve kullanım biçimleri gözlemlenmiş ayrıca materyalin taslak biçimi tanıtılmış, denemeleri ve fikirlerini belirtmeleri istenmiştir.
Bahsedilen görüşmeler ve gözlemler ışığında Taylor kasanın öğretmen ve öğrenciler tarafından kullanışlı bulunmadığı ve kullanım tercihinde bulunulmadığı tespit edilmiştir. Taylor kasanın taşları deliklere tam oturmakta ve çıkmamaktadır. Bu materyale kararlı bir yapı kazandırırken zor kullanışlılığa da neden olmaktadır.
Ö1: “Taylor kasa kullanışlı olmadığından pek kullanmıyoruz…Takılınca oynamıyor ama takıp çıkarmaması zor…”
Küptaş kasa ile ilgili görüşmeler ve gözlemler materyalin kullanışlı olmadığı ve ezberci bir yapısının olduğu yönündedir.
Ö2: “ Taşlar çarpmalar sonucu kolayca kaymakta ve oluşturulan işlem bozulmakta…”
Ö3: “Ayrı işlem işaretleri yok. Bir çizgi var, yönüne göre toplama, çıkarma, toplama ve çarpma olabilmekte…”
Ö4: “Ayrıca rakamlar bulunmamaktadır, rakam işaretinden sonra alfabedeki harfler sırası ile rakamları ifade etmektedir.”
Ö4: “Eşittir işareti yok, bu ifade için boş bölme kullanılıyor…Öğrencilerin “eşittir”i algılaması güç oluyor…”
Ö2: “Aileler kabartmaya alışık olmadıkları için öğrencilere yardımcı olamıyor…”.
Ö3: “Küptaş ilk kademede kullanılıp ikinci kademede kullanılmıyor ve bu öğrencilerin zorlanmasına sebep oluyor”.
Ö2: “Küt parmak sorunu olan öğrenciler taşların üzerindeki kabartmaları algılamakta zorluk yaşamaktadır. Küt parmak sorunu olan öğrenciler için kabarıkların derinlik ve genişliğinin arttırılması gerekmektedir..”.
Ö1: “Küptaş kasanın ezberci, karmaşık ve karıştırmaya müsait bir yapısı var”.
Bahsedilen iki materyalin dışında kullanılan abaküs gören öğrencilerinde matematik öğrenirken kullandığı bir öğrenme aracıdır. Ancak abaküs de dört işlemin ötesine geçmemektedir.
İS ile öğretmen ve öğrencilerin denemeleri sonucunda elde edilen gözlemler ve değerlendirmeler materyalin matematik öğretiminde daha yaygın kullanım imakanı oluşturacağı yönünde kanaat oluşmasına neden olmuştur.
Ö1: “Bu materyal kullanılırsa, gören ve görmeyen akranlar, aile ve görme engelli öğrenci arasında ortak bir dil olacaktır. Akranlar iğneli sayfa ile rahatlıkla birlikte çalışabilecek, aileler öğrencilere takıldıkları noktalarda anlam güçlüğü çekmeden destek verebilecektir”.
Ö2: “Birinci kademede temel işlemlerle İğneli Sayfa’yı kullanmayı öğrenen öğrenciler ikinci kademe ve lisede daha karmaşık konularda da materyali kullanmaya devam edebilir”.
Ö4: “Birçok şeyi yapabiliyor olmak güzel…temel cebirsel işlemler, grafik oluşturma kesir işlemleri, üstlü sayılar, kümeler, …geometri gibi birçok matematik konusunu kapsıyor”.
Ö2: “İğneli Sayfa’da kullanılan malzemeler materyalin altındaki bölmelere takılabilecek olması çok güzel… bu hem taşınmasını kolaylaştıracak hem de kaybolma riskini ortadan kaldıracaktır”.
Çalışmalar esnasında bazı sınırlılıklar da tespit edilmiştir. Bu sınırlılıklar arasında aşağıda belirtilen katkı tüm öğretmenlerin kullanımı öğretirken belirtmesi, vurgulaması gereken bir durumdur. Ancak bu durum materyalden değil, geometrinin doğasından kaynaklı bir durumdur.
Ö3: “Yatay ve düşeydeki iki iğne arası aralıklar eşitken çaprazda bu aralık doğal olarak daha büyük. … öğrenci, aralıkları sayarak eş kenar üçgen oluşturduğunu düşünmemesi için sadece yatay ve düşey aralıkların arasının 1 birim olduğu vurgulanmalıdır”.
Öğrencilerin fikirleri sorulduğunda ise ilginç ve farklı bir materyalin kullanılmasının çekiciliğini yansıtan ifadelere rastlanmıştır.
Ç1: “Bu bizim olacak mı?...Olsun isterim…”
Ç2: “Bunu kullanmayı ne zaman öğreneceğiz…Evet, çok beğendim”
Sonuç olarak abaküsün boncuklu ve kararlı yapısı ile Taylor ve Küptaş kasaların kareli yapısı, İS ile birleştirilmiş ve daha avantajlı bir yapıya kavuşturulmuştur.





Hiç yorum yok:

Yorum Gönder